Freestanding graphene/MnO2 cathodes for Li-ion batteries

نویسندگان

  • Şeyma Özcan
  • Aslıhan Güler
  • Tugrul Cetinkaya
  • Mehmet O Guler
  • Hatem Akbulut
چکیده

Different polymorphs of MnO2 (α-, β-, and γ-) were produced by microwave hydrothermal synthesis, and graphene oxide (GO) nanosheets were prepared by oxidation of graphite using a modified Hummers' method. Freestanding graphene/MnO2 cathodes were manufactured through a vacuum filtration process. The structure of the graphene/MnO2 nanocomposites was characterized using X-ray diffraction (XRD) and Raman spectroscopy. The surface and cross-sectional morphologies of freestanding cathodes were investigated by scanning electron microcopy (SEM). The charge-discharge profile of the cathodes was tested between 1.5 V and 4.5 V at a constant current of 0.1 mA cm-2 using CR2016 coin cells. The initial specific capacity of graphene/α-, β-, and γ-MnO2 freestanding cathodes was found to be 321 mAhg-1, 198 mAhg-1, and 251 mAhg-1, respectively. Finally, the graphene/α-MnO2 cathode displayed the best cycling performance due to the low charge transfer resistance and higher electrochemical reaction behavior. Graphene/α-MnO2 freestanding cathodes exhibited a specific capacity of 229 mAhg-1 after 200 cycles with 72% capacity retention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MnO2–graphene nanosheets wrapped mesoporous carbon/sulfur composite for lithium–sulfur batteries

MnO2-graphene nanosheets wrapped mesoporous carbon/sulfur (MGN@MC/S) composite is successfully synthesized derived from metal-organic frameworks and investigated as cathode for lithium-ion batteries. Used as cathode, MGN@MC/S composite possesses electronic conductivity network for redox electron transfer and strong chemical bonding to lithium polysulfides, which enables low capacity loss to be ...

متن کامل

Additive-free thick graphene film as an anode material for flexible lithium-ion batteries.

This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigat...

متن کامل

A facile approach to nanoarchitectured three-dimensional graphene-based Li–Mn–O composite as high-power cathodes for Li-ion batteries

We report a facile method to prepare a nanoarchitectured lithium manganate/graphene (LMO/G) hybrid as a positive electrode for Li-ion batteries. The Mn(2)O(3)/graphene hybrid is synthesized by exfoliation of graphene sheets and deposition of Mn(2)O(3) in a one-step electrochemical process, which is followed by lithiation in a molten salt reaction. There are several advantages of using the LMO/G...

متن کامل

Verifying the Rechargeability of Li‐CO2 Batteries on Working Cathodes of Ni Nanoparticles Highly Dispersed on N‐Doped Graphene

Li-CO2 batteries could skillfully combine the reduction of "greenhouse effect" with energy storage systems. However, Li-CO2 batteries still suffer from unsatisfactory electrochemical performances and their rechargeability is challenged. Here, it is reported that a composite of Ni nanoparticles highly dispersed on N-doped graphene (Ni-NG) with 3D porous structure, exhibits a superior discharge c...

متن کامل

Freestanding rGO-SWNT-STN Composite Film as an Anode for Li Ion Batteries with High Energy and Power Densities

Freestanding Si-Ti-Ni alloy particles/reduced graphene oxide/single wall carbon nanotube composites have been prepared as an anode for lithium ion batteries via a simple filtration method. This composite electrode showed a 9% increase in reversible capacity, a two-fold higher cycle retention at 50 cycles and a two-fold higher rate capability at 2 C compared to pristine Si-Ti-Ni (STN) alloy elec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017